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ABSTRACT

It is discussed that long range coherent magnetic fields in the
Universe were spontaneously generated at high temperature due
to vacuum polarization of non-Abelian gauge fields. The fields
created at the reheating have resulted in the present intergalactic
magnetic field B ∼ 10−15G. The zero value of the screening
mass for fields of this type was discovered recently. A proce-
dure to estimate the field strengths at different temperatures is
developed and the lower bound on the magnetic field strength
B ∼ 1014G, at the electroweak phase transition temperature,
is derived for the standard model. The magnetic field scale is
estimated.
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INTERGALACTIC MAGNETIC FIELDS

Magnetic fields B ∼ µG presence everywhere – in galaxies, clusters of galaxies
Determination of intergalactic magnetic fields B0 ∼ 10−15G:

[S. Ando, A. Kusenko, Astrophys. J. Lett. 722 (2010) L 39][arXiv:1005.1924] looked at
the source morphology (hallo, γ cascades: γ → e+e− → γ∗, γ∗, ...);

[S. Ando, A. Kusenko, [arXiv:1012.5313]] looked at blazer spectra.

Complementary and independent methods.

This value was estimated either as lower or upper limit. So, it is actual value at 3.5CL
accuracy.

[A. Neronov, E. Vovk. Science 328 (2010) 73.] B0 ∼ 10−16G.



To be amplified by dynamo action of large-scale convective motions the fields must be
coherent on the scale 1mPc.

Zeeman splitting and/or Faraday rotation are operating if B ≥ 10−9G.

ASTROPHYSICAL CONSTRAINTS

• Bing Bang Nucleosynthesis (BBN) limit B ≤ 1011G
or B ≤ 7 · 10−7G at galaxy formation;

• Cosmic microwave background (CMB) limit B ≤ 10−9G.



MECHANISMS for GENERATION of B

Popular mechanisms for generation of seed magnetic fields at high temperature in the early
universe:

• metric perturbations

• strong first order EW phase transition [Hogan (1980)]

• stochastic electric currents

• paramagnetic resonances in scalar (or axion) - electromagnetic field system

• Born-Infield electrodynamics, HE effective Lagrangian

• inflation

• cosmic strings

• trace anomaly

• extradimensions

• gravitational couplings of gauge field potentials



In all these considerations it is ASSUMED

magnetic flux is conserved and therefore the dependence of B ∼ T 2

takes place at cooling of the universe.

OUR MAIN IDEA:

seed (primordial) magnetic field is spontaneously generated

at high temperature due to

vacuum polarization and asymptotic freedom of non-Abelian gauge fields.

These magnetic fields are temperature dependent

[Starinets, Vshivtsev, Zhukovsky(1994)],

[Skalozub(1996)], [Bordag, Skalozub (2000)],

[Demchik, Skalozub (2008)] (in lattice simulations):

B(T ) ∼ g3T 2

log T
τ

. (1)

So, there is no magnetic flux conservation at high temperature!



At zero temperature, [ Savvidy (1978)]. The magnetized vacuum state is

unstable because of the mode p20 = p2|| − gB in the gluon spectrum,

p20 = p2|| + (2n + 1)gB, n = −1, 0, 1, ..., (2)

that results in a condensate. Because of instability, the Abelian constant mag-

netic field B = const is completely screened.

At T 6= 0 the spectrum stabilization happens due to either a gluon magnetic

mass [Bordag, Skalozub (2000)] or a so-called A0-condensate which is propor-

tional to the Polyakov loop [Starinets, Vshivtsev, Zhukovskii (1996)]. That is

implemented in a stable magnetized vacuum.



As it was shown [Skalozub, Strelchenko (1999)], this mass is positive and

stabilizes the spectrum at high temperature:

m2
eff. = m2

magn. − gB > 0, m2
magn. ∼ g2(gB)1/2T. (3)

In the same way the A0-condensate acts in the high temperature phase. Thus,

in the deconfinement phase a spontaneously generated Abelian chromomag-

netic field could happen.

The Abelian chromomagnetic field directed in the third direction in a coordinate

and internal space can be described by the potential

Aa
µ = δa3(0, 0, Bx1, 0), B = const. (4)

It is a solution of field equations without a source term.

So, it can be spontaneously generated.



SPONTANEOUS VACUUM MAGNETI-
ZATION at HIGH TEMPERATURE

On a lattice, the main continuous object is a magnetic flux. We relate the free

energy density of the flux to the effective action [Demchik, Skalozub (2008)],

F (ϕ) = S̄(ϕ)− S̄(0), (5)

where S̄(ϕ) and S̄(0) are the effective lattice actions with and without chro-

momagnetic field, ϕ is the field flux.

The spontaneous creation of the field follows if free energy has

a global minimum at non-zero flux, ϕmin 6= 0.



The hypercubic lattice Lt × L3
s (Lt < Ls) with the hypertorus geometry

was used; Lt and Ls are the temporal and the spatial sizes of the lattice,

respectively. In the limit of Ls → ∞ the temporal size Lt is related to physical

temperature.

The Wilson action of the SU(2) lattice gauge theory is

SW = β
∑

x

∑

µ>ν

[

1− 1

2
Tr Uµν(x)

]

; (6)

Uµν(x) = Uµ(x)Uν(x + aµ̂)U †
µ(x + aν̂)U †

ν(x), (7)

where β = 4/g2 is lattice coupling, g is the bare coupling, Uµ(x) is the link

variable located on the link leaving the lattice site x in the µ direction, Uµν(x)

is the ordered product of the link variables. The effective action S̄ in (5) is

the Wilson action SW averaged over the Boltzmann configurations produced

in the MC simulations.



Fig. 3: The plaquette presentation of the twisted boundary conditions

The chromomagnetic flux ϕ through the whole lattice was introduced by ap-

plying the twisted boundary conditions. In this approach, the edge links in

all directions are identified as usual periodic boundary conditions except for the

links in the second spatial direction, for which the additional phase ϕ is added.

The magnetic flux ϕ is measured in angular units, ϕ ∈ [0; 2π).



The MC simulations are carried out by means of the heat bath method. The

lattices 2 × 83, 2 × 163 and 4 × 83 at β = 3.0, 5.0 are considered. These

values of the coupling constant correspond to the deconfinement phase and

perturbative regime.

The effective action depends smoothly on the flux ϕ in the region ϕ ∼ 0.

So, the free energy density can be fitted by a quadratic function of ϕ,

F (ϕ) = Fmin + b(ϕ− ϕmin)
2. (8)

In Eq.(8), there are three unknown parameters, Fmin, b and ϕmin. ϕmin denotes

the minimum position of free energy, whereas the Fmin and b are the free

energy density at the minimum and the curvature of the free energy function,

correspondingly. They have been fitted by a standard χ2 method.

Table 1: The values of the generated fluxes ϕmin for different lattices
(at the 95% confidence level).

2× 83 2× 163 4× 83

β = 3.0 0.019+0.013
−0.012 0.0069+0.0022

−0.0057 0.005+0.005
−0.003

β = 5.0 0.020+0.011
−0.010



The fit results are given in the Table 1. As one can see, ϕmin demonstrates

the 2σ-deviation from zero.

Fig. 4: The 95% confidence level area for the parameters Fmin and ϕmin

(b for right fig.).

The flux ϕmin is positively determined!



MAGNETIC FIELD CHARACTERISTICS

The most essential for what follows characteristics of the field:

Stability

To verify stability we substituted the value of Bmin(T ) in the one-loop

EP, the imaginary part was of the order 10−12 of the real one.

This means the stable state!

Temperature dependence

In SU(2) gluodynamics, from the EP

V (B, T ) = V (1)(B, T ) + V (ring)(B, T ) it was determined

(gH)1/2 =
g2

2π
T. (9)

Thus, a temperature dependent chomomagnetic field is spontaneously

created at high temperature.



Masslessness (long-range magnetic fields)

In SU(2) lattice gauge theory in the presence of Abelian magnetic fields

[Antropov, Bordag, Demchik, Skalozub (2010)].

We use the General Purpose computation on Graphics

Processing Units (GPGPU) technology allowing to study the large

lattices up to 32× 643. Some details of MC simulations on the ATI GPUs

can be found in [V. Demchik, A. Strelchenko, arXiv:0903.3053 [hep-lat]].

The constant homogeneous magnetic flux is introduced on a lattice by applying

the twisted boundary conditions. For each lattice geometry Lt × L3
s, we have

fitted the effect of magnetic field with the lattice plaquette average by means

of different functions:

〈Uuntwisted〉 − 〈Utwisted〉 = f(m,Ls). (10)

The best fit function for Abelian magnetic field is C/r exp(−mr) with a

small value of the magnetic mass m = 0.0000125. This case corresponds

to the magnetic tube with increasing field strength. Actually, the magnetic

mass is equal to zero within the statistical uncertainties appeared.



Fig. 5: f(m,Ls) versus Ls and fitting curves (Lt = 4, β = 2.6).



f(m,LS) LS

0.161± 0.018 6
0.12± 0.011 8
0.097± 0.008 10
0.081± 0.006 12
0.069± 0.005 14
0.06± 0.004 16
0.054± 0.003 18
0.048± 0.003 20
0.044± 0.002 22
0.04± 0.002 24
0.037± 0.002 26
0.0345± 0.0016 28
0.0322± 0.0014 30
0.0302± 0.0013 32
0.025± 0.001 38

Table 2:

Monte-Carlo data.

Abelian field
Fit function χ2 C m

C exp(−mr) 901.8 0.063 m = (2.44+0.06

−0.06)× 10−2

C exp(−m2r2) 1924.4 0.035 m = (1.57+0.02

−0.02)× 10−2

C/r 7.090 0.911

C/r exp(−mr) 7.086 0.912 m = (1.25+52
−54)× 10−6

C/r exp(−m2r2) 7.090 0.911 m2 = (2.4+5951.2

−5784 )× 10−10

C/r2 31400 28.13

C/r2 exp(−m2r2) 7550 18.26 m2 = −3.3× 10−5

C/r4 159500 248.9

C/r4 exp(−m4r4) 161000 10.0 m = 0.0

Table 3: Fit results for magnetic
mass of Abelian magnetic
field.



QUALITATIVE CONSIDERATION

The most relevant aspects of the phenomena of interest are consequences

of asymptotic freedom and spontaneous symmetry breaking at finite tem-

perature – the basic principles of modern QFT.

Our main assumption is that the intergalactic magnetic field had been spon-

taneously created at high temperature.

This is a reasonable because physically the magnetization is the consequence

of a large magnetic moment for charged non-Abelian gauge fields (remind the

gyromagnetic ratio γ = 2 for W -bosons). Just this property results in the

asymptotic freedom of the model.



First, in non-Abelian gauge theories magnetic at high temperatures flux con-

servation does not hold. The vacuum acts as a specific source generating

classical fields.

Second, the spontaneous vacuum magnetization takes place for small scalar

field φ 6= 0, only. For the values of φ corresponding to any first order phase

transition it does not happen.

After the electroweak phase transition, the vacuum polarization ceases to gen-

erate magnetic fields and magnetic flux conservation holds. As a result, the

familiar dependence on the temperature B ∼ T 2 is restored.



Composite structure of electromagnetic field Aµ. The potentials

Aµ =
1

√

g2 + g′2
(g′A3

µ + gbµ), (11)

Zµ =
1

√

g2 + g′2
(gA3

µ − g′bµ),

Only the component Aµ = 1√
g2+g′2

g′A3
µ = sin θwA

3
µ is present at high tem-

perature. Here θw is the Weinberg angle, tan θw = g′
g .

This is the only component responsible for the intergalactic magnetic field at

low temperature.



In restored phase, bµ = 0, and A
(3)
µ is unscreened. This is because the

magnetic mass of this field is zero [S. Antropov, M. Bordag, V. Demchik, V.

Skalozub arXiv:1011.314/v1 [hep-ph] 13 Nov 2010].

The field is a long range. Its coherence length is to be sufficiently large.

The constituent of the weak isospin field corresponding to the magnetic one is

B(T ) = sin θw(T )B
(3)(T ), (12)

where B(3)(T ) is the strength of the field generated spontaneously.

After the phase transition, part of the field is screened.



For EWPT temperature Tew:

B(Tew)

B0
=

T 2
ew

T 2
0

=
sin θw(Tew)B

(3)(Tew)

B0
, (13)

B0 ∼ 10−15G. Parameter τ can be fixed for given temperature and B0. After

that, the field strength values at various temperatures can be calculated.

Conclusion:

This is the low bound on the magnetic field strength in the hot universe.



EFFECTIVE POTENTIAL at HIGH T

The spontaneous vacuum magnetization and zero magnetic mass for the Abelian

magnetic fields were determined in lattice simulations [V. Demchik, V. Skalozub

(2008)], [S. Antropov, M. Bordag, V. Demchik, V. Skalozub (2010)].

The actual value of B(T ) is close to the one calculated with EP V (B, T ) =

V (1)(B, T ) + V ring(B, T ). We present analytic results, considering the W -

boson contributions as an example.

Consider two limits,

1. weak magnetic field and large scalar field condensate, h = eB/M 2
w < φ2,

φ = φc/φ0, β = 1/T ,

2. the case of the restored symmetry, φ = 0, gB 6= 0, T 6= 0.

For the former, we show the absence of spontaneous vacuum magnetization

at finite temperature.



For the latter , we estimate B(T ). Here Mw is the W -boson mass at zero

temperature, φc is a scalar field condensate, and φ0 its value at zero tempera-

ture.

1. Contribution of W -bosons,

V (1)
w (T, h, φ) =

h

π2β2

∞
∑

n=1

[(φ2 − h)1/2β

n
K1(nβ(φ

2 − h)1/2) (14)

− (φ2 + h)1/2β

n
K1(nβ(φ

2 + h)1/2)
]

.

Here n labels discrete energy values and K1(z) is the MacDonald func-

tion.

The high temperature limit is the pure Yang-Mills part (B̃ ≡ B(3)),

V (1)
w (B̃, T ) =

B̃2

2
+

11

48

g2

π2
B̃2 log

T 2

τ 2
− 1

3

(gB̃)3/2T

π
(15)

− i
(gB̃)3/2T

2π
+O(g2B̃2),

where τ is a temperature normalization point



2. The charged scalar contribution

V (1)
sc (B̃, T ) = − 1

96

g2

π2
B̃2 log

T 2

τ 2
+

1

12

(gB̃)3/2T

π
+O(g2B̃2), (16)

describing the contribution of longitudinal vector components.

The imaginary part is generated because of the unstable mode in the

spectrum (2). It is canceled by the term in daisy diagrams for the unstable

mode

Vunstable =
gB̃T

2π
[Π(B̃, T, n = −1)− gB̃]1/2 + i

(gB̃)3/2T

2π
. (17)

Here Π(B̃, T, n = −1) is the mean value in the ground state n = −1

of the spectrum (2). If this value is large, spectrum stabilization takes

place.



In the review [V. Demchik, V. Skalozub arXiv:hep-th/9912071 (1999)] the

complete EP is present. The mean value of one-loop PT in the spectrum

ground state reads,

Π(B̃, T, n = −1) = α[12.33
(g sin θwB)1/2

β
+ i4

(g sin θwB)1/2

β
]. (18)

Here β = 1/T . Sufficiently large real part stabilizes the spectrum due to

radiation corrections included.



MAGNETIC FIELD at Tew

Spontaneous vacuum magnetization at T 6= 0 and non-small φ 6= 0.

Notice, the magnetization is produced by the gauge field contribution given

in Eq. (14). We consider the limit of gB
T 2 ≪ 1 and φ2 > h. We use the

asymptotic expansion of K1(z),

K1(z) ∼
√

π

2z
e−z

(

1 +
3

8z
− 15

128z2
+ · · ·

)

, (19)

where z = nβ(φ2 ± h)1/2.

Let us investigate the limit of β → ∞, T
φ
≪ 1 and substitute (φ2 ± h)1/2 =

φ(1± h
2φ2

).



The sum of the tree level energy and (14) reads

V =
h2

2
− h2

π3/2

T 1/2

φ1/2

(

1 − T

2φ

)

e−
φ
T . (20)

The second term is exponentially small and the stationary equation ∂V
∂h = 0

has the trivial solution h = 0.

We conclude:

after symmetry breaking the spontaneous vacuum

magnetization does not take place.



At the EWPT temperature the total EP must be used. This can be best done

numerically.

To explain the procedure, we consider the part of this EP accounting for the

one-loop W -boson contributions.

The high temperature expansion for the EP coming from charged vector fields

is given in (15).

The value of chromomagnetic weak isospin field coming from (15) and (16)

is

B̃(T ) =
1

16

g3

π2

T 2

(1 + 5
12

g2

π2
logT

τ )
2
. (21)

We relate this expression with the intergalactic magnetic field

B0.



Let us introduce the notations, g2

4π = αs, α = αs sin θ
2
w,

(g′)2
4π = αY and

tan2 θw(T ) =
αY (T )
αs(T )

, where α is the fine structure constant.

For a rough estimate, we substitute: sin2 θw(T ) = sin2 θw(0) = 0.23.

For the given temperature EWPT, Tew, the field strength is

B(Tew) = B0
T 2
ew

T 2
0

= sin θw(Tew)B̃(Tew). (22)



Assuming Tew = 100GeV = 1011eV and T0 = 2.7K = 2.3267 · 10−4eV , we

obtain

B(Tew) ∼ 1.85 1014G. (23)

This value can serve as a lower bound on B(T ) at the EWPT. Hence, for

the value of X = log Tew
τ , we have the equation

B0 =
1

2

α3/2

π1/2 sin2 θw

T 2
0

(1 + 5α
3π sin2 θw

X)2
, (24)

and log τ can be estimated.

To guess the value of τ we take B0 ∼ 10−9G, usually used in cosmology, we

obtain τ ∼ 300eV .

For the lower bound value B ∼ 10−15G this parameter is much smaller.

The strong suppression of B(T ) we explain within the SM!



MAGNETIC FIELD SCALE

Now we discuss the scale of the field in the restored phase

[E. Elizalde, V. Skalozub, Europ. Phys. J. C 72 (2012) 1968.]

Remind

If one assumes that after the EWPT the constant field B(Tew) was frozen

in the plasma at the Hubble scale, RH(Tew), then its comoving coherence

scale at present has to be λB(T0) = 6 · 10−4 pc. This is much smaller than

necessary!

We consider the reheating stage of the universe evolution.

Due to causality, the temperature in the Universe is the same, in all domains

of space, which could even be uncorrelated in later moments of time.



At a given T the magnetic field generated due to vacuum polarization

has the same strength B(T ) everywhere in the Universe. Formally, the

field strength could have different directions, in either external or internal

spaces. Different kind of (chromo)magnetic fields can be spontaneously gen-

erated. The magnetic fields coherent on huge scales have been present in the

early Universe. The origin of this coherence is ensured by the properties of

the solution to the field equations discussed above and the causality at the

inflationary epoch.



A scenario to produce long-range magnetic field is based on stochastic

processes considered already by

Hogan (1983): The magnetic fields correlated on large scales

can be produced by a random walk mechanism, if the magnetic

lines generated in some domain of space “forget” about their

origin. The field strength developed on large scales by this process can be

estimated as BN ∼ B/
√
N , where N counts the number of domains, with

the field B of a given size, crossed by a magnetic line. The correlation length

λB in this case can be much larger than the RH(T ). It can be estimated as

λB(T ) ∼ NRH(T ).

In our case At a given temperature, each uncorrelated domain of space

having a Hubble radius RH(T ) is filled up with a constant magnetic field

B(T ). Its orientation in both external and internal spaces is arbitrary. Hence,

a stochastic behavior of the field lines and the appearance of magnetic fields

having large correlation lengths λB(T ) ≥ RH(T ) are expected. After the

EWPT, these fields evolve according to the flux conservation law B(T ) ∼ T 2.



Note: All the fields generated at the inflation epoch are washed out by

the vacuum polarization and leave no remnants at present. The reheating

stage becomes more important.

We also remind: Long-range nature of the Abelian spontaneously gen-

erated magnetic fields is ensured by their zero magnetic mass, what renders

these fields unscreened, as is the case for usual U(1) magnetic fields. The dif-

ference, however, is essential because the former fields appear due to vacuum

polarization and the latter ones need currents to be produced.



As we have found above, the field strengths at the EWPT temperature,

estimated with account to the present-day value of the intergalactic magnetic

field strength, B0 ∼ 10−15 G or either directly from the vacuum magnetiza-

tion in the standard model differ in six orders of magnitude.

This huge deviation can be explained by the different scales of the fields

considered.

We used the usual relation between the scale factor and the temperature,

a(Tew)

a(T0)
=

T0

Tew
, (25)

taken at the EWPT epoch, and the present-day parameters, Tew = 100GeV =

1011 eV , T0 = 2.3267 · 10−4 eV .



If we assumes that λB(T) ∼ a(T), then from (25) it follows that λB(T0) =

6 · 10−4 ps. On the other hand, if one takes λB(T0) = 1 Mpc, the value

λB(Tew) = 2.33 · 10−15 Mpc is obtained. At the same time, the horizon size

is a(Tew) = 1.27 · 10−24 Mpc, thus, λB(Tew) >> a(Tew).

Now, following the idea of Hogan (1983), we relate the size of the cor-

related field with the random walk process. At Tew, we have λB(Tew) =

Na(Tew), hence, we get roughly
√
N = 3 · 104, and for the field strength

“straightened” on the N -domain scale, BN ∼ B(Tew)√
N

. Therefore, account-

ing for the field strength value calculated for the standard model we obtain

Bls(Tew) ∼ 3 · 1015 G (the subscript in Bls means “large scale”). This value

is close the value Bls(Tew) ∼ 2 · 1014 G estimated in Eq. (23).

In the present scenario, the vacuum polarization generates in-

tergalactic magnetic fields at the reheating without any needs

in amplification!



CONCLUSION

• At the Tew, magnetic fields of the order B(Tew) ∼ 1014G did exist.

• The key point is the spontaneous vacuum magnetization, it eliminates

the magnetic flux conservation principle at high temperature. Vacuum

polarization is responsible for the value of B(T ) at each temperature and

serves as a source of it.

• After symmetry breaking, φ-condensate suppresses the magnetization.

• Due to stability and zero magnetic mass of the spontaneously created

magnetic fields, there are no problem with creating of long-range mag-

netic fields at high temperature.

• The stochastic random walk process can explain the scale of the present

day intergalactic magnetic fields.

These statements change ubiquitous scenario with magnetic flux conservation.


